
MATRINE

Common name Matrine

 $Chemical \quad name \qquad \qquad (1R,2R,9S,17S)-7,13-diazatetracyclo [7.7.1.02,7.013,17] heptadecan$

-6-one

 $\begin{array}{lll} \mbox{Empirical formula} & C_{15} \mbox{H}_{24} \mbox{N}_2 \mbox{O} \\ \mbox{RMM} & 248.36 \\ \mbox{m.p.} & 76.0 \ \mbox{°C} \end{array}$

v.p. 1.67E-06 mmHg at 25°C

Solubility In water 58 g/l, methanol and acetonitrile > 250 g/l(all at 20°C)

Description White solid

Stability Stable in neutral and weak acidic conditions but hydrolysed in

alkaline condition

Formulation Soluble liquid

MATRINE TECHNICAL CONCENTRATE XXX/TK/M/-

1. Sampling. Take at least 100 g.

2. Identity tests

- **2.1 HPLC.** Use the HPLC method below. The relative retention time of matrine in the sample solution should not deviate by more than 1.5% from that of calibration solution.
- **2.2 UV** spectrometry. Record the UV spectrum during the HPLC determination from 190 to 400 nm using a diode array detector. The spectrum obtained from the sample should not differ significantly from that of the standard.

3. Matrine

OUTLINE OF METHOD

Matrine is determined by high performance liquid chromatography on a reversed phase column with UV detection and external standardization.

REAGENTS

Acetonitrile: HPLC grade Methanol: HPLC grade Water: Ultra-pure

Ammonium acetate: AR grade Triethylamine: AR grade

Matrine standard: Known purity

APPARATUS

Balance

Ultrasonic water bath

High performance liquid chromatography equipped with a detector suitable for operation at 215nm

Column stainless steel, Inertsustain 150 mm \times 4.6 mm (i.d) columns, C18 packed with octadecyl silane filler (5 μ m), or equivalent.

Filter pore diameter: 0.45 µm

PROCEDURES

(a) LIOUID CHROMATOGRAPHIC CONDITIONS

Mobile phase: Acetonitrile / Water (0.02% Ammonium acetate + 0.02% Triethylamine) =

23/77(v/v)

Flow rate: 1.0 ml/min

Detector wavelength: 215 nm

Injection volume: $10~\mu l$ Column temperature: $30~^{\circ}C$

Retention time: approximately 11.4 min

- **(b) Equilibration of the chromatographic system.** Inject the calibration solution and repeat the injections until retention times and the response factors calculated from the peak areas vary by less than 1.5 % for successive injections.
- **(c) Preparation of solvent:** 500 ml methanol and 500 ml water are measured into a 1000 ml volumetric flask and mixed thoroughly as solvent used to dissolve samples (named as Solution 1).
- (d) Preparation of standard solution: Approximate 50 mg (to the nearest 0.2 mg) of matrine standard is weighed into a 25 ml volumetric flask, dissolved and made to volume with Solution1 as matrine stock standard solution. Then transfer 1.0 ml of matrine stock standard solution into a 25 ml volumetric flask, dilute to volume with Solution1 and mix thoroughly to prepare matrine standard solution. The solution should be filtered through 0.45 μ m filter film before use.
- (e) Preparation of sample solution: Prepare solutions in duplicate for each sample. Weigh sufficient sample (to the nearest 0.2~mg) to contain about 50~mg of matrine into a 25~ml volumetric flask, dissolved and made to volume with Solution1 as sample stock solution. Then transfer 1.00~ml of sample stock solution into a 25~ml volumetric flask, dilute to volume with Solution1 and mix thoroughly to prepare sample solution. The solution should be filtered through $0.45~\mu m$ filter film before use.
- (f) Determination: Inject in duplicate 10 μ l portions of each sample solution bracketing them by injections of the calibration solutions as follows: C_A , S_1 , C_B , S_2 , S_2 , C_A , etc

(g) Calculation

$$f_i = \frac{S \times P}{H_S}$$

Content of =
$$\frac{H_w \times f}{w}$$
 g/kg

where:

fi=individual response factor

f= mean response factor

 H_s =peak areas of matrine in the calibration solution

 H_w =peak areas of matrine in the sample solution

s=mass of matrine standard (mg)

w=mass of sample taken (mg)

P=purity of matrine standard (g/kg)

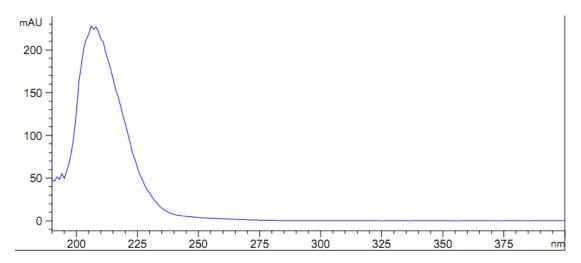


Fig 1 UV spectra of matrine

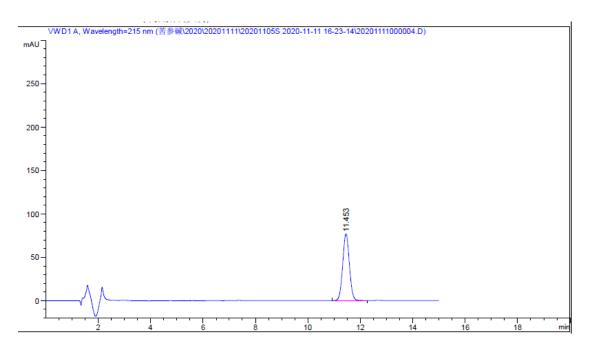


Fig. 2 Chromatogram of matrine standard

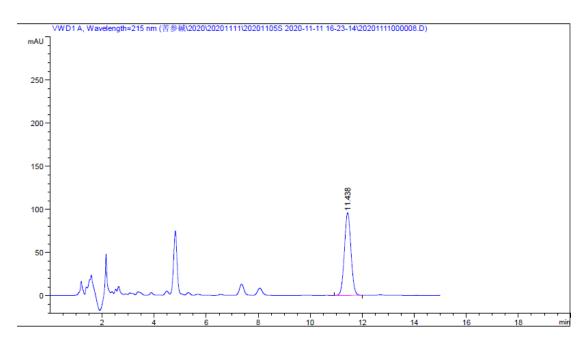


Fig. 3 Chromatogram of matrine 10% TK sample

MATRINE SOLUBLE LIQUID XXX/SL/M/-

- 1. Sampling. Take at least 1l.
- 2. Identity tests. As for matrine XXX/TK/M/2
- **3. Matrine.** As for matrine XXX/TK/M/3 except:

PROCEDURES

- (e) Preparation of sample solution: Prepare solutions in duplicate for each sample. Weigh sufficient sample (to the nearest 0.2 mg) to contain about 2 mg of matrine into a 25 ml volumetric flask, dissolved and made to volume with Solution1 as sample stock solution. Mix thoroughly, the solution should be filtered through 0.45 µm filter film before use.
- (g) Calculation

$$f_i = \frac{S \times P}{H s}$$

$$matrine content = \frac{H_w \times f}{25 \times w} g/kg$$

where:

f=individual response factor

f= mean response factor

 H_s =peak areas of matrine in the calibration solution

 $H_{\rm w}$ =peak areas of matrine in the sample solution

s=mass of matrine standard (mg)

w=mass of sample taken (mg)

P=purity of matrine standard (g/kg)

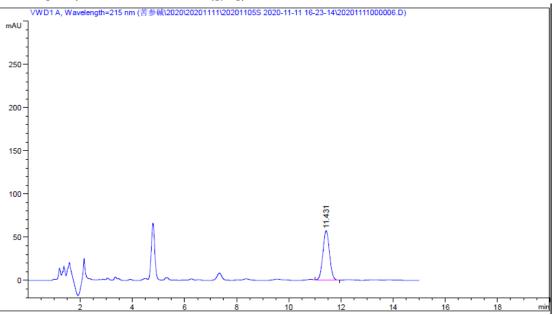


Fig. 4 Chromatogram of matrine 0.3% SL sample